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An elastic theory for Langmuir-Blodgett films is presented. The expression for the free energy 
density of the film is obtained in terms of the deformation tensor by means of symmetry 
considerations and by making use of a quasi-microscopic model. The influence of a linear 
term in the deformation tensor in the elastic energy density is analysed. It is shown that when 
the elastic constant of the linear term is larger than a critical value, the ground state of the 
film is periodically distorted. 

1. Introduction 
Nematic liquid crystals are constituted of elongated 

molecules that, in a first approximation, may be consid- 
ered as rod-like [l]. The molecular interaction is such 
that the molecular major axes are tendentially parallel 
to a given direction n, called the director [l]. When n 
is position-independent, the nematic is undistorted. On 
the contrary, in the case n = n(r), where r is the vector 
position with respect to the origin of a Cartesian refer- 
ence frame, the nematic is distorted. When the n(r) 
variation takes place over a distance 1 that i s  very large 
with respect to a molecular dimension a, it is possible 
to describe the nematic director field by means of an 
elastic theory. This was proposed long ago by Oseen 
and Frank [2] and it is very similar to the usual elastic 
theory for solid materials. According to this theory, the 
nematic elastic properties are taken into account by 
introducing four (or five) elastic constants [2]. They 
may be connected with the intermolecular interaction 
energy [3]. A simple analysis shows that the elastic 
description near a limiting surface is different from that 
in the bulk, and new elastic constants appear in the 
elastic description [4,5]. The aim of our paper is to 

*Author for correspondence. 
tlhvited paper presented at the European Conference on 

Liquid Crystals, Bovec, Slovenia, March 1995. 

build an elastic theory for a two-dimensional nematic 
with polar properties (broken up and down symmetry). 
This extension of the usual Frank elastic theory is 
important because Langmuir-Blodgett films behave in 
this manner [6]. In $2, the elastic energy density of a 
Langmuir-Blodgett film is obtained, and the number of 
elastic constants needed to describe the elastic properties 
deduced, taking into account the intrinsic biaxiality of 
the system. In particular, a contribution linear in the 
deformation tensor having the form of a Lifchitz invari- 
ant [7] is shown to exist in the expression for the elastic 
energy density of the film. It is also shown that the 
uniform part of the elastic energy is partially due to the 
anisotropic interaction between the film and the solid 
substrate and partially to the interaction among the 
molecules of the film itself. It represents the anisotropic 
part of the surface tension of the film-substrate interface. 
In $3, the actual orientation of the film is deduced by 
minimizing the total energy of the film. We show that a 
possible stable solution of the elastic equilibrium equa- 
tions is connected to spatially modulated structures, if 
the elastic coefficient connected with the Lifchitz invari- 
ant is large enough. In $ 4, the elastic constant associated 
to the Lifchitz invariant is deduced by means of a simple 
pseudo-molecular model. The main results of our paper 
are discussed in Q 5, where we discuss the importance of 
the Lifchitz invariant on the stable orientation of the 
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10 A. L. Alexe-Ionescu et al. 

film and from what kind of molecular interactions the 
relevant elastic constant takes its origin. 

2. Elastic theory of a two-dimensional orientationally 
ordered medium (2-D nematic) 

Let us consider a two-dimensional orientationally 
ordered medium, like a 2-D nematic, in contact with a 
flat isotropic substrate of surface C and border y. The 
molecules forming the film are supposed to be rod-like. 
The molecular major axis will be indicated by m and it 
will be supposed to be of modulus one: mimi = 1 (see 
figure I ) .  The distribution of the molecules over C is 
supposed to be liquid-like. In the case m(Z) = mo, i.e. 
when m is position-independent, the film is considered 
as undistorted. On the contrary, if m is position depend- 
ent, the film is considered to be distorted. Let mi be the 
Cartesian components of m and mi , j  = ami/axj the ele- 
ments of the deformation tensor. In the elastic limit 
lmi,jI << l/lo, 1, being the distance between the neigh- 
bouring molecules, the elastic free energy per unit area 
f may be regarded as an analytical function of the 
deformation tensor, of elements mi, i .  This means that 

In the elastic limit, mi,j  are small quantities. Hence it is 
possible to expand equation (1) in a power series of 
rni,js. At the second order approximation, we obtain 

where ,f,(mi) is the energy density of the undistorted 
state. It can be expanded in a power series of m * k, 
where k is the geometrical normal to C (see figure 1). 
By taking into account that m is not equivalent to -m 
(owing to the broken up/down symmetry supposed in 

- I m 

Figure 1. Rod-like molecule forming a Langmuir-Blodgett 
film. Z is the flat isotropic surface over which the film is 
deposited. m coincides with the molecular long axis. k is 
the geometrical normal to the surface. 9 and 4 are the tilt 
and twist angles, respectively. 

the present analysis), at the second order in m * k, f ,  is 
given by 

f,(mi) = -wl(m- k) -$w2(m.k)’. (3) 

As stressed before, equation (3) is a consequence of the 
polar structure of the amphiphilic molecules forming the 
Langmuir-Blodgett film. In equation ( 3 ) ,  w1 and wZ take 
their origin from the intermolecular interaction among 
the molecules forming the film and from the interaction 
of the molecules of the substrate with those of the film. 
f ,  represents the anisotropic part of the uniform contn- 
bution to the surface energy density of the film. Hence 
it can be considered as the anisotropic component of 
the surface tension of the film-substrate interface. As is 
evident, f ,  has an extrinsic part due to the film-substrate 
interaction and an intrinsic part which depends only on 
the physical properties of the film. The orientation of 
the film minimizing f ,  may be considered as the ‘easy 
direction’ imposed by the presence of the film-substrate 
interface or the film itself. In the absence of the linear 
term in (2) (Ai ,  = 0), this orientation also minimizes 
J’(rn,, qj ) ,  because ( 1/2)B,jkemj,jmk,, > 0. However, as 
will be shown in the following, the presence of the linear 
term in ( 2 )  can drastically change the orientation of the 
ground state. This means that the easy direction minimiz- 
ing f , ,  could no longer minimize the total energy of the 
film. Of course, this conclusion remains valid even in 
the case in which the easy direction is uniform on 
the surface. 

In (2). A,j  and BIjke play the role of ‘elastic parameters’. 
They are defined by 

and 

(4) 

These parameters may be evaluated when the intermol- 
ecular interaction energy is known. This will be shown 
in $ 4  in relation to the tensor A of elements Ai j .  As a 
consequence of ( 5 ) ,  the elastic tensor of elements Elijke is 
such that Bijke = Bkeij .  The elastic tensors appearing in 
( 2 )  have to be decomposed in terms of the elements of 
symmetry of the medium under consideration, of the 
identity tensor of elements dij and of the Levi-Civita 
antisymmetric tensor of elements g i j k ,  according to well- 
known rules [S]. The elements of symmetry of the film 
are m and the geometrical normal of the flat and 
isotropic surface k. 

Let us consider first the tensor of elements A i j .  From 
the above discussion it may be decomposed in the 
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Elastic theory for LBjfilms 11 

following manner 

Aij  = A1hij + A2kik j  + A,mjki + A4mimj + Asmikj, 

if the molecules forming the film are supposed to be 
non-chiral. 

(6) 

The energy term linear in mi,j  is then 

A .  r l  m. 1.J . = A (V * m) + A,( k - V )( k * m) 

+A,k- [m x (V x m)l, (7) 

because from mimi = 1, it follows that m , q j = O  for 
every j .  Note that for our 2-D nematic, m=m(x,y),  
where (x, y) are the Cartesian coordinates of the consid- 
ered point on X. This means that m is defined only over 
X and it is z-independent. In the case of a flat surface 
(as is supposed in our analysis), the geometrical normal 
is parallel to the z axis. Consequently k - V E 0 and the 
constant A ,  does not enter into the elastic description. 
It follows therefore that for a flat isotropic surface and 
a monomolecular film made of non-chiral molecules, the 
energy term linear in the deformation tensor of elements 
mi, reduces to 

Aijmi,j=A1(V-m)+A,k.[mx(Vxm)].  (8)  

The scalar parameters Al and A,  depend on m;k, 
where m, is the molecular orientation of the undeformed 
film introduced before. They are position independent. 
Since A,(V*m) reduces to a line contribution for the 
Gauss theorem, it can be neglected in (2). In relation to 
the latter term in (8), a simple analysis shows that it 
may be rewritten as 

k - [m x (V x m)] = kimjmj, ,  - mjmi, ki = - mjmi, ki 

= - (m.V)(m*k),  (9) 

because kimjmj,i = m * [(k - V )m] = 0. In conclusion, the 
term (7) is equivalent to 

Aijmi, = - A(m V )(m - k), (10) 

where A = A, .  It is known as the ‘Lifchitz invariant’ [9]. 
The quadratic term in (2) may be decomposed in the 
usual manner. In our case, in a first approximation, it 
may be written in the form ( l / 2 )Kmi , jmi , j ,  where K > 0 
is the usual nematic-like elastic constant [ 101. This 
expression for the quadratic term appearing in the free 
energy density of the film corresponds to the well-known 
Oseen-Frank energy density for a nematic liquid crystal 
in the one constant approximation (see for instance 
[lo]). When 

m = icos Q, sin 9 + j sin Q, sin 9 + kcos 9, (1 1) 

where q5 and 9 are defined in figure 1, simple calculations 

give 

f ,  = - w1 cos 9 - $w2cos2$ 

+sinz$[(:J + (ZY]] 
for the different contributions to the elastic energy 
density of the distorted monomolecular film appearing 
in equation (2). The actual function m(x,y) is obtained 
by minimizing the total elastic energy. 

3. Total elastic energy and molecular orientation of the 
film 

The total elastic energy F of the monomolecular film 
deposited over a flat and isotropic substrate is obtained 
by integrating (2) over the surface of the film Z. By 
taking into account (12) we have 

1 
2 

- w1cos9 - - w2cos29 

as 

Equation (13) is minimized by the m(x, y) field, or the 
8(x,y) and 4(x,y) angles. Routine calculations give for 
the Euler-Lagrange equations satisfied by 9(x, y) and 
4 k Y )  [ I l l  

=O.  (14b) 

By solving (14) we can obtain the tilt, 9(x, y) and twist, 
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12 A. L. Alexe-Ionescu et al. 

d,(x, y ) ,  angles formed by m(x, y) with k and with a given 
direction x. 

The ‘bulk’ equations (14) have to be solved with the 
boundary conditions imposed on the border y of the 
surface Z. As is well known, these boundary conditions 
are obtained by means of a variational approach minim- 
izing the total energy of the film. It is given by F,= 
F + F.f, where F is given by (13) and F, takes into 
account the energy contribution connected with the 
presence of the line y. The quantity Fy plays the same 
role as the surface tension when an interface between 
two different media is considered. In our case, we have 
two kinds of ‘surface tension’: the first one is connected 
to the interaction of the film with the substrate, described 
by w1 and w2 in equation (3), and the second is connected 
to the presence of the border y, described by Fy.  In the 
following, we will suppose that F, << F. This condition 
is usually satisfied if Z is large enough. In fact F K R2 
and F y c c R ,  where R is a typical dimension of Z. 
Consequently, F,/F K 1/R. This means that for large R, 
the above mentioned inequality is verified. In this case 
the total energy of the film practically coincides with F 
given by ( 1  3). This implies that the boundary conditions 
for the ‘bulk equations (14) are the transversality condi- 
tions [ 111. By taking into account (13), these conditions 
can be written as 

[ K  (i + j g )  + ,isin*$(icos4 + jsin 4) - 0  = 0, 1 

where 0 is a unit vector normal to y,  parallel to the 
(x, y)-plane. 

It should be stressed that among the solutions of the 
non-linear partial differential equations (14) and the 
boundary condition (15), there is the exact solution in 
which the twist angle d,(x, y) is constant and the tilt angle 
,9(x,y) depends in a simple manner on x and y.  In fact 
in the case 

(16) ,9 = 9(;”), where i‘ = qlrl = q,x + qyy,  

one obtains from (15) 

i.e. d, = const [7]. In this case, the boundary condition 
( 15 h) is identically satisfied, whereas ( 15 a) becomes 

From now on the y-line will be supposed to be of 

rectangular shape with two sides parallel to q. In this 
case, the above mentioned boundary condition is identi- 
cally satisfied on the two sides parallel to q, because 
q * G = 0. On the other sides, it writes as 

d9 
d t  

K - + /I sin’ 9 = 0, on the two sides normal to q. 

(15a‘) 

This equation clearly shows that /I is equivalent to a 
finite anchoring energy. Equation (15 a’) indicates that 
if A #  0, ((d$/d[),I = (A /K)  sin2 8. This means that the 
system tries to be distorted over C. 

We point out that when the substrate is assumed to 
be isotropic, neither the value of 4, nor q1 = y,i + q,j 
can be determined. On the contrary, when the substrate 
is characterized by an azimuthal anisotropy, d, is deter- 
mined by the associated anisotropy-energy (connected 
with the easy azimuthal axis). In this case, the wave 
vector q, is parallel to the azimuthal easy axis. Let us 
suppose, as before, that the substrate is flat and isotropic. 
The previous discussion shows that the function S([) 
given by (16) is determined by equation (14), which in 
the present case is written 

d29 
d t2  

-Kq’ ~ + w2 sin Scos 9 + w1 sin 3 = 0, (18) 

q2 being defined as q2 = q z +  q;. The ‘bulk’ equation 
(18) has to be solved with the boundary condition 
(15~’ ) .  However, in the present case it is simpler to 
follow an alternative method. It consists of writing the 
first integral of (18). In this manner an integration 
constant, connected to the total energy, appears in the 
problem. This integration constant is then found by 
minimizing the total energy of the system, given by (1 3) 
with respect to this quantity. The first integral of (18) is 

(19) 

where E is the integration constant to be determined. 
As follows from (19), E is related to the total energy 
density connected with the $-deformation (see also equa- 
tion (13)). The solution of (18), or of (19), depends on 
w, and w2, characterizing the uniform portion of the 
surface energy Jb. For the sake of simplicity, in the 
following, we will limit our investigation to the case 
w1 = 0. In this sub-case, the solution of (19) is 

where sn(u/m) is the Jacobian elliptical function and m 
is the parameter of this function [ 121. In (20), k = w2/E. 
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Elastic theory for LB films 13 

From (20) we obtain 

where am (uj is the amplitude of the Jacobian elliptical 
function. By substituting (20) into (13), after integration, 
one obtains F = F ( E ) .  Consequently, the E-parameter 
may be determined by minimizing F with respect to E .  
The period L of the space modulated structure (SMS) 
is determined, from (19), and it is found to be [9] 

L = 4K(k) (21 1 
where K ( k )  is the so-called real quarter period of the 
Jacobian function [12] (or the elliptical integral of the 
first kind between 0 and 2n). In the asymptotic case in 
which k = wz/E << 1, the Jacobian elliptical function 
introduced in (20) can be approximated by [I 121 

because in our approximation E = Kq2. It follows from 
(20) that one has 

9(X> Y )  = t = qxx + 4 y Y .  (23) 
By substituting (23 )  and (17) into (13), straightforward 
calculations give, for the total energy of the mono- 
molecular film, per unit area and per $-period, the 
expression 

The q-value minimizing (24) is 

q = 1/2K, ( 2 5 )  
fixing the period of the SMS. It may be simply verified 
that the differential system (14) and (15) also admits the 
trivial solution 

d(x, y) = 0 and #(x, y )  = const, (26 1 
corresponding to a homogeneous state (HS). It may be 
instructive to compare the total energy of the homogen- 
eous state with that of the SMS. A simple calculation 
gives 

from which we can derive that the SMS is energetically 
favourable, i.e. AF < 0, only if 

1 > ,Ic = (2w2K)”’. (28) 
For ) * < A c  the HS corresponds to the stable 
configuration. 

In the framework w1 # 0, but w1 << (A2/2K), the previ- 
ous analysis remains almost unchanged. Therefore, this 
case will not be considered further. 

4. Molecular estimation of the elastic constant 
connected to the Lifchitz-invariant 

In the previous section, we have shown that if 3, > ic, 
given by equation (28), FsMs < FH. This implies that the 
ground state is periodically distorted, and its period is 
given by 2n/q = 4nK/A, according to (25). This situation, 
in some respects, is similar to that corresponding to 
cholesteric liquid crystals [11]. In that case, a linear 
term in the deformation tensor is present, due to the 
chirality of the molecules forming the phase under 
consideration, The main difference between the two cases 
is that an unbounded cholesteric liquid crystal sample 
displays a periodic deformation, for all values of the 
elastic constant associated to the linear term (spontan- 
eous twist). On the contrary, in the present case, there 
exists a critical value of the relevant elastic constant, 
such that for smaller values, the HS structure is energetic- 
ally favoured. As discussed elsewhere [ 131, it is possible 
to connect the elastic constants characterizing the mono- 
molecular, orientationally ordered film to the intermol- 
ecular interaction energy. In this section this will be 
done for the elastic constant 1 connected to the Lifchitz 
invariant. 

Let g(m, m’, r) be the intermolecular interaction energy 
between the surface elements dX and dC’ at R and R = 
R + p, where the direction of the molecular major axes 
are m and m’ (see figure 2). In general g(m, m’, r) may 
be expanded in power series of m * r, m‘ * r and m * m’ in 
the following manner 

g(m, m’, r) = 1 cabc(r)(m m’)8(m - r)b(m’ - r)c, (29) 

where the expansion coefficients Cabc depend only on 
abc 

\m. 

Figure 2. The geometrical parameters characterizing the 
interaction between the two surface elements d 2  and dZ’ 
in which the average molecular orientation is m and m’. 
G and G‘ are the centres of the molecules. r = G G  and p 
is the vector lying on the plane Z from dZ to dC’. 
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14 A. L. Alexe-Ionescu et al. 

the modulus of r. Since g(m, m’, r) = g(m’, m, r), we derive 
b = C .  

In the hypothesis that the interaction centre is 
localized in the middle of the molecules G, we have 

1 1 
2 2 

R , = R + - m  and R&=R’+-m‘ ,  (30) 

where 1 is the length of the molecule forming the 
Langmuir-Blodgett film, as follows from figure 2. By 
means of (30), one derives 

1 
2 

where 6m = m’ - m. Since m - m = m’ m‘ = 1, to the first 
order in 6m,m and 6m are mutually orthogonal: 

r = R & - R R , = p +  -6m, (31) 

m -6m = 0. ( 3 2 )  

By substituting (31) into (19) and taking into account 
both (32) and the condition [6ml<< 1 valid in the elastic 
limit, we obtain for the expansion coefficients to the first 
order in )6ml 

1 
e a h ( r )  = cab(P) + Bab(p) 5 6m, 

where 

and hence 

x (m - u)Zb- l (~  - 6m) (33) 

where cab(P) = pZbcah(p), Ba,(p) = p2bBab and u = pip. 
According to [ 131, the elastic tensor connected with the 
linear contribution in the deformation tensor is 

in the mean field approximation. In (34) xi@) are defined 
by 

and Ern means that the integration over p is extended 
over the range of intermolecular forces giving rise to 
the orientationally ordered monomolecular film. By 

substituting (33) into (35) one obtains 

Consequently the tensor Aij is found to 

(36) 

be 

‘u,u,pdC‘ 

1 1 
- Bah(p)(m * u)2huiu,pdC . (37) 

A simple analysis shows that the first term on the right 
hand side of (37) is identically zero. To show this, let us 
consider a Cartesian reference frame in which m = 

(sin 9, 0, cos 9) and u = (cos t,b, sin I), 0), as  shown in 
figure 3. In this case the term under consideration writes 

In polar coordinates C, is defined by: po  < p < p m  and 
0 < $ < 295 where po is of the order l/n1l2, where (T is 
the molecular surface density of the film. pm is the range 
of the intermolecular forces. By using polar coordinates, 
(38) can be rewritten as 

1 
y j  = - C bRah(pO, prn)(sin9)2b-1tij(b) (39) 

a,b 

.t 
r r i 3  

Figure 3. The Cartesian reference frame used to evaluate 
the integrals appearing in the pseudo-molecular model 
to estimate the elastic constant connected to the 
Lifchi tz-invariant. 
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Elastic theory for LBfilms 15 

where By taking into account that 

7c jn2n uiujd$ = - 2 6 . .  V’ 

we obtain A,(b = 0) = A,(b = 0)dij, where and 
J PO 

(40) 

tij(b) = (COS +)2b-1uiUjd$. r 
A straightforward calculation shows that tij(b) = 0. 
Consequently, T j  = 0. It follows that the tensor A, we 
are looking for is given by 

I P P  

To deduce the explicit expressions for 1 = A3, it is 
necessary to reconsider the expansion (6). From it one 
easily obtains 

I (42) 

Aii = 3A,+ A2 + A3 P + A4 + A5P, 
m.A . .m .=  I EJ J A ,  + A 2 P 2  + A3P + A 4  + ASP, 

ki Aijkj = A ,  + A,  + A3P + A,  P2 + A ,  P, 

kiAijmj= A , P +  A 2 P +  A ,  + A , P +  A5P2, 
miAijkj = A I P  + A2P + A,  P2 + A 4 P  + A,, 

where P = m - k = cos 9. A simple analysis shows that 

kiA..k u i- -k iA. .m.=miA. .k .=  EJ J V J kiA..m.=O, U J (43) 

because k s u = 0. By taking into account (43), we obtain 
from (42) the following expression for the elastic constant 
connected to the Lifchitz invariant 

(1  - P2)Aii  x 2miAijmj 
A 3 = R = P  (44) ( 1  - P2)2 

It should be noted that in the case b=0, it follows 
from (41) that 

J 1 
2 

= ( 1  - P2)  - Aii(b = 0). 

Consequently I(b = 0) = 0. This is consistent with equa- 
tion (41). In fact, if b = 0 the tensor of elements Aij  is 
given by 

Aij (b  = 0 )  = f Lm Bao(p)p2dp uiujd+. 
a 

71 
Al(b  = 0 )  = - 1 C 

8 a  

By comparing the expression for Aij(b = 0) with expan- 
sion (6), we obtain A3(b = 0) = I (b  = 0) = 0, as deduced 
before. As a consequence of these results the Lifchitz 
invariant is connected to an intermolecular interaction 
depending on (m - r) and (m‘ r). When these terms are 
absent, so that g depends only on the relative orientation 
m-m’, 3, is identically zero. Since b 2 1, it is possible to 
rewrite (44) in the form 

x (cos +)2b( 1 - 2 cos2 +)d+, (46) 

showing that there are no divergences in the limit P + 1. 
As an example, let us now consider the simple case in 

which 

g(m, m’, r) = Gne-criro)z(m - m’)’(m - r)(m’ - r), (47) 

where Go is the strength of the molecular interaction 
and ro a typical length, of the order of magnitude of the 
molecular dimensions. Expression (47) for g(m, m’, r) is 
a generalization of that proposed by McMillan [ 141 for 
studying the smectic phase. By comparing (47) with (25) 
we deduce that 

c a b  = Go 6,2 6b1 e - ‘riro’2, (48) 

and hence 

It follows that 
3 

B ( - 2bB = -2G e-criro)26a28b1. (50) 
0 2  

By substituting (50) into (46) a simple calculation gives 

ab P - p ab 
rn 

Other more general models can be considered, as 
suggested recently by Binder et al. [ lS]  and Safran 
et al. [16]. 
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16 Elastic theory for LBfilms 

5. Conclusions 
An elastic description of an orientationally oriented 

monomolecular film has been proposed. By generalizing 
the well-known elastic theory proposed by Frank for a 
nematic liquid crystal, an expression for the elastic 
energy density of a Langmuir-Blodgett film has been 
obtained. We have shown that when the distortion is 
described by means of a tensor of a second order defined 
by ami/axj, where m is the average molecular orientation, 
the elastic energy density may contain a linear term in 
the deformation tensor. This term is known to people 
working in magnetism as the Lifchitz-invariant [ 9). Our 
analysis has shown that the ground state of the 
Langmuir-Blodgett film may be distorted if the elastic 
constant connected to the Lifchitz-invariant [ 91 is larger 
than a critical value. We have also proposed a pseudo- 
molecular model to evaluate the elastic constants charac- 
terizing the Langmuir-Blodgett film. According to this 
model, the Lifchitz-invariant has to be taken into 
account in the elastic description every time the inter- 
action among the molecules forming the film does not 
depend only on the relative orientation of the interacting 
molecules. A simple expression for the intermolecular 
interaction energy describing the interaction between 
conically shaped molecules has also been proposed. The 
analysis presented in this paper may be useful also to 
describe the alignment induced in nematic liquid crystals 
by surfaces coated by a Langmuir-Blodgett film [ 171. 
In fact, according to Hiltrop and Stegemeyer [6,17], 
the nematic orientation in samples aligned by means of 
Langmuir-Blodgett films is sometimes related to steric 
interaction. This means that the nematic liquid crystal 
molecules can enter into small holes existing in the film. 
The absorbed liquid crystal molecules are before forced 
into a preferred orientation which is transferred to the 
bulk director field through the elastic interaction. This 
model implies that the steric interaction is very large, 
and hence the nematic liquid crystal orientation near 
the Langmuir-Blodgett film is coincident with that of 
the film. The model has been recently used by the 
Goteborg group to interpret the temperature of surface 
transitions in nematic liquid crystal samples oriented by 
means of egg lecithin 118, 191. The original model of 
Hiltrop and Stegemeyer has been recently generalized 
by Alexe-Ionescu et al. [20,21], to describe the case 
where the steric interaction between both the nematic 
and the film is comparable with the dispersion inter- 
action between both the nematic and the film and the 
nematic and the solid substrate. However, since the 
steric interaction between a nematic liquid crystal and 
thc Langmuir-Blodgett film always plays an important 
role in the macroscopic orientation of the nematic 
sample, it is important to know the ground state of the 

orienting film. The analysis reported in our paper has 
shown that the latter can either be distorted or undis- 
torted according to the importance of the Lifchitz 
invariant. 
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